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Quantum electromagnetic field in a three-dimensional oscillating cavity
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We compute the photon creation inside a perfectly conducting, three-dimensional oscillating cavity, taking
the polarization of the electromagnetic field into account. As the boundary conditions for this field are both of
Dirichlet and~generalized! Neumann type, we analyze as a preliminary step the dynamical Casimir effect for
a scalar field satisfying generalized Neumann boundary conditions. We show that particle production is en-
hanced with respect to the case of Dirichlet boundary conditions. Then we consider the transverse electric and
transverse magnetic polarizations of the electromagnetic field. For resonant frequencies, the total number of
photons grows exponentially in time for both polarizations, the rate being greater for transverse magnetic
modes.
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I. INTRODUCTION

The existence of an attractive force between two
charged, perfectly conducting parallel plates was predic
by Casimir in 1948@1# and has recently been measured at
15% precision level using state-of-the-art cantilevers@2#. A
similar force between a conducting plane and a sphere
also been measured with progressively higher precision
the last years using torsion balances@3#, atomic force micro-
scopes@4#, and capacitance bridges@5,6#, with the latter ref-
erence showing the relevance of Casimir forces in nanote
nology. For a recent review of experimental and theoret
developments, see Ref.@7#.

The dynamical effect consists in the generation of phot
due to the instability of the vacuum state of the electrom
netic field in the presence of time-dependent boundaries
the literature it is referred to as dynamical Casimir effect@8#
or motion-induced radiation@9#. The dynamical effect has
been recently reviewed in Ref.@10#. Up till now no concrete
experiment has been performed to confirm this photon g
eration, but an experimental verification is not out of rea
From the theoretical point of view it is widely accepted th
the most favorable configuration in order to observe the p
nomenon is a vibrating cavity in which it is possible to pr
duce resonant effects between the mechanical and field
cillations.

Many previous papers have focused their attention in
scalar field quantization within a one-dimensional cav
@11,12#. Recently, we analyzed in detail the case of a thr
dimensional cavity@13#, but still considering a scalar field
~in this and other@14# previous works Dirichlet boundary
conditions are assumed!. The main difference between on
and three-dimensional cavities is that, while in one dim
sion the cavity’s frequency spectrum is equidistant and le
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to strong intermode interactions, in three dimensions
spectrum is in general nonequidistant, and only a few mo
may be coupled. The relevance of this coupling has b
pointed out only recently~see Refs.@13,15#! . The aim of this
paper is to extend the results of Ref.@13# to the realistic case
of the electromagnetic field, properly taking into account t
polarization of the different modes@transverse electric~TE!
and transverse magnetic~TM! polarizations#.

As we will see in Sec. II, the electromagnetic field i
volves both Dirichlet and~generalized! Neumann boundary
conditions. For this reason, it is of interest to analyze
case of a massless scalar field satisfying this latter type
boundary conditions, which we do in Sec. III. Assuming
resonant vibration of the cavity and using multiple sca
analysis@16# we will show that the number of particles pro
duced is much larger than for Dirichlet boundary condition
We study in detail the resonant case in which the cav
oscillates at twice the frequency of some field mode. In S
IV we show that TE modes of the electromagnetic field b
have as a scalar field with Dirichlet boundary condition
while TM modes are analogous to the scalar case with N
mann boundary conditions. Sec. V contains our main con
sions.

II. THE BOUNDARY CONDITIONS

We consider a rectangular cavity formed by perfectly co
ducting walls with dimensionsLx ,Ly , and Lz . The wall
placed atx5Lx is at rest fort,0 and begins to move fol-
lowing a given trajectory,Lx(t), at t50. We assume this
trajectory as prescribed for the problem~not a dynamical
variable! and that it works as a time-dependent bound
condition for the field. Moreover, we will assume a nonre
tivistic motion of the wall withLx(t)5L0@11e f (t)# with
e!1 and f (t) a bounded function. We use units\5c51.

Let us consider the problem of finding the electroma
netic field inside the cavity in terms of the four-vector pote
tial Am5(w,A). In the Coulomb gauge“•A50, the scalar
potential w vanishes and the vector potential satisfies
©2002 The American Physical Society11-1
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wave equationhA50. For the static walls, the boundar
conditions are the usual ones

Ei50; B'50, ~1!

where i and', respectively, denote the components of t
field, parallel and perpendicular to the wall. Note that the
conditions follow from Faraday’s law and from the fact th
the divergence of the magnetic field vanishes~i.e., the
source-free Maxwell equations!.

On the moving wall, these boundary conditions must
imposed in a Lorentz frame in which the mirror is instan
neously at rest. As the mirror moves in thex direction, it will
be convenient to decompose the electromagnetic fields
TE and TM modes with respect to thex axis. The TE fields
are defined as the solutions to Maxwell equations w
E(TE)

• x̂50. Analogously, the TM fields satisfyB(TM)
• x̂

50.
It is useful to introduce adifferent vector potential for

each polarization through the equations@17,18#

E(TE)52] tA
(TE), B(TE)5“3A(TE), ~2!

B(TM)5] tA
(TM) , E(TM)5“3A(TM) . ~3!

Both potentials satisfy the Coulomb gauge and have van
ing x component. AsA• x̂50 andw50, the vector potentials
are invariant under a boost in thex direction. The same is
true for the Coulomb gauge. In terms of these potentials,
boundary conditions are relatively simple@18#. Let us denote
by S the laboratory frame and byS8 the instantaneous co
moving frame. InS8 the TE vector potential satisfies Dirich
let boundary conditionsA8(TE)(x850,y8,z8,t8)50. There-
fore, on the moving mirror,

A(TE)@x5Lx~ t !,y,z,t#50. ~4!

On the other hand, the TM vector potential satisfies

nm8]m8A
8(TM)~x850,y8,z8,t8!50, ~5!

wherenm85(0,1,0,0). As a consequence, for a nonrelativ
tic motion of the mirror,

nm]mA(TM)@x5Lx~ t !,y,z,t#

5@]x1L̇x~ t !] t#A
(TM)@x5Lx~ t !,y,z,t#

50, ~6!

i.e., a ‘‘generalized’’ Neumann boundary condition withnm

5(L̇x,1,0,0). On the static mirrors the boundary conditio
for the TE vector potential are given by

A(TE)~x50,y,z,t !50,

Ay
(TE)~x,y,$z50,Lz%,t !5Az

(TE)~x,$y50,Ly%,z,t !50. ~7!

For the TM potential we have

]xAz
(TM)~x50,y,z,t !5]xAy

(TM)~x50,y,z,t !50,
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Ay
(TM)~x,$y50,Ly%,z,t !5]yAz

(TM)~x,$y50,Ly%,z,t !50,

Az
(TM)~x,y,$z50,Lz%,t !5]zAy

(TM)~x,y,$z50,Lz%,t !50.
~8!

From these boundary conditions it is clear that the beha
of each component of the TE vector field is related to
problem of a scalar field subjected to Dirichlet bounda
conditions. For the TM vector field it is necessary to de
with the generalized Neumann boundary conditions given
Eq. ~6!. The former problem was extensively studied in o
previous paper@13#, and the latter will be treated in the fol
lowing section.

In the derivation of the boundary conditions above w
have assumed that the perfect conductor boundary condit
must be imposed in the Lorentz frame in which the movi
mirror is instantaneously at rest. This is the usual proced
~see Refs.@17–19#!. One might argue that the acceleration
the mirror could induce modifications to the boundary co
ditions. However, this is not the case. The boundary con
tions can be imposed in a noninertial frame in which t
mirror is at rest all the time. In this frame, the electroma
netic tensorFmn is written asFmn5Am;n2An;m , where ;
denotes the covariant derivative. It is easy to show that
connection coefficients contained in the covariant derivat
cancel out, and thenFmn can be written using ordinary de
rivatives, Fmn5]nAm2]mAn . The source-free Maxwel
equations follow from this identity, and therefore have t
same form both in the noninertial frame and in the instan
neous Lorentz frame. Consequently there are no correct
to the boundary conditions due to the acceleration of
mirror.

III. SCALAR FIELD WITH NEUMANN BOUNDARY
CONDITIONS

Let us consider the problem of a massless scalar fi
f(x,t) satisfying the wave equationhf50 and ~general-
ized! Neumann boundary conditions on all surfaces of
cavity. In the comoving frame the Neumann boundary co
dition is nm8]m8f850. In the laboratory frame, this cond
tion becomesnm]mf50, wherenm5(L̇x,1,0,0). Therefore
we have

]xf~x50,y,z,t !50; ~]x1L̇x] t!f@x5Lx~ t !,y,z,t#50;

]yf~x,$y50,Ly%,z,t !50; ]zf~x,y,$z50,Lz%,t !50.
~9!

A. Instantaneous basis

The Fourier expansion of the field for an arbitrary m
ment of time can be written in terms of creation and anni
lation operators as

f~x,t !5(
n

an
inun~x,t !1H.c., ~10!
1-2
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where the mode functionsun(x,t) form a complete orthonor
mal set of solutions of the wave equation with Neuma
boundary conditions. Whent<0 ~static cavity! each field
mode is determined by three nonnegative integersnx ,ny ,
andnz . Namely,

un~x,t,0!5
1

A2vn

A 2

Lx
cosS nxp

Lx
xDA 2

Ly

3cosS nyp

Ly
yDA 2

Lz
cosS nzp

Lz
zDe2 ivnt,

~11!

vn5pAS nx

Lx
D 2

1S ny

Ly
D 2

1S nz

Lz
D 2

, ~12!

with the shorthandn5(nx ,ny ,nz). In order to satisfy the
boundary conditions fort.0 it is useful to expand the mod
functions in Eq.~10! with respect to aninstantaneous basis.
If the boundary condition on the moving mirror were th
instantaneous Neumann condition]xf@x5Lx(t),y,z,t#50,
the trivial choice for the instantaneous basis would be

A 2

Lx~ t !
cosS kxp

Lx~ t !
xDA 2

Ly
cosS kyp

Ly
yD

3A 2

Lz
cosS kzp

Lz
zD . ~13!

However, as the generalized Neumann condition in Eq.~9!
involves the time derivative of the field, the situation is mo
complex.

We consider new variables (h,j) in the (t,x) plane in
order to reduce the problem of generalized Neumann bou
ary conditions to the case of ‘‘standard’’~i.e., no time deriva-
tive of the field! Neumann boudary conditions, for which w
know how to choose the instantaneous basis. We define
line h5const as a slight modification of the correspondi

FIG. 1. Worldlines of the mirrors along the x direction. The lin
h5const is orthogonal to the worldlines atx50 andx5Lx(t), and
the coordinatej measures the distance from the static mirror alo
the h5const line.
03381
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t5const line, in such a way that it is orthogonal to the wor
lines of the mirrors atx50 andx5Lx(t) ~see Fig. 1!. The
variablej is defined as the distance, on the lineh5const,
from x50 to x. In these coordinates, the generalized bou
ary condition on the two mirrors becomes the standard o
namely ]jf(j,y,z,h)50 both at j50 and at j5 l (h),
where l (h) is the value of the coordinatej on the moving
mirror. Therefore, an instantaneous basis to describe the
is

A 2

l ~h!
cosS kxp

l ~h!
j DA 2

Ly
cosS kyp

Ly
yD

3A 2

Lz
cosS kzp

Lz
zD . ~14!

To find a concrete form for the new coordinates we wr
h5t1g(x,t). Thereforej is given by

j5E
0

x

dx8A11
g82~x8,t !

@11ġ~x8,t !#2
. ~15!

At this point it is important to note that, since we a
considering motions of the wall that are small@O(e)# devia-
tions from the initial static position, terms of orderO(e2) or
higher will be neglected in what follows. Moreover,g(x,t)
5O(e), j5x1O(e2), and l (h)5Lx(t)1O(e2). With this
in mind, it is easy to show that, in order to fulfill the assum
orthogonality between the lineh5const and the mirrors
worldlines, the functiong(x,t) must satisfy

g~x50,t !50; g@x5Lx~ t !,t#50;

]xg~x50,t !50; ]xg@x5Lx~ t !,t#52L̇. ~16!

There are many solutions to the above conditions, that ca
written in the form

g~x,t !5L̇x~ t !Lx~ t !v@x/Lx~ t !#, ~17!

where v(0)5v(1)50, v8(0)50, and v8(1)521 ~the
prime denotes derivation with respect tox). For example, a
possible solution isv(z)5 1

2 (z22z4). The freedom of select-
ing the functiong(x,t) means that one can choose differe
instantaneous basis to describe the same field, and for
of them one has in principle a different set of modes. Ho
ever, physical quantities like the number of created partic
or the energy density inside the cavity should not depend
the choice ofg(x,t). We will keep a general function as
benchmark for our calculations.

Finally, the mode functions in Eq.~10! can be expanded
in terms of the instantaneous basis Eq.~14! as

g

1-3
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un~x,t.0!5(
k

Qk
(n)~h!A 2

l ~h!
cosS kxp

l ~h!
j DA 2

Ly
cosS kyp

Ly
yDA 2

Lz
cosS kzp

Lz
zD

.(
k

@Qk
(n)~ t !1Q̇k

(n)~ t !g~x,t !#A 2

Lx~ t !
cosS kxp

Lx~ t !
xDA 2

Ly
cosS kyp

Ly
yDA 2

Lz
cosS kzp

Lz
zD

[(
k

@Qk
(n)~ t !1Q̇k

(n)~ t !g~x,t !#fk@x,Lx~ t !#, ~18!
al
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where the functionsQk
(n)(t) depend on the choice forg(x,t).

The initial conditions are given by

Qk
(n)~0!5

1

A2vn

dk,n , Q̇k
(n)~0!52 iAvn

2
dk,n , ~19!

provided thatLx(t) and L̇x(t) are continuous att50, and
that the initial accelerationL̈x(0)5O(e2). In this way we
ensure that each field mode and its time derivative are
continuous functions att50.

B. Dynamical equations

We now study the trajectoryLx(t)5L0@11e sin(Vt)#.1

The equations for the modesQk
n(t) can be obtained from Eq

~18!, sincehun(x,t.0)50. We first apply the Dalamber
tian, and then multiply byfk and integrate over the cavity
To orderO(e2), the equations read

Q̈k
(n)1vn

2~ t !Qk
(n)522l~ t !(

j
gjk Q̇j

(n)2l̇~ t !(
j

gjkQj
(n)

22l̇~ t !Lx
2~ t !(

j
r jk Q̈j

(n)

2(
j

Q̇j
(n)@r jk l̈~ t !Lx

2~ t !2l~ t !h jk #

2l~ t !Lx
2~ t !(

j
r jk] tQ̈j

(n) , ~20!

where

vk~ t !5pAS kx

Lx~ t ! D
2

1S ky

Ly
D 2

1S kz

Lz
D 2

, ~21!

l~ t !5
L̇x~ t !

Lx~ t !
, ~22!

1Strictly speaking, we should add toLx(t) some decaying function
in order to meet the continuity conditions att50. Since we will be
interested in a resonant behavior of the field, this additional fu
tion will not contribute, being irrelevant for what follows. For
more detailed discussion of this point see Ref.@13#.
03381
so

r jk 5E
0

Lx(t)

dxE
0

Ly
dyE

0

Lz
dzvf jfk , ~23!

h jk 5Lx
2~ t !E

0

Lx(t)

dxE
0

Ly
dyE

0

Lz
dz

3@~v92v j
2v !f jfk12v8f j8fk#. ~24!

Here,v j is the frequency of the mode evaluated ate50. As
before, the prime denotes derivation with respect tox. The
coefficientsgjk are defined by

gjk 5Lx~ t !E
0

Lx(t)

dxE
0

Ly
dyE

0

Lz
dz

]f j

]Lx
fk

5H ~21!kx1 j x
2 j x

2

kx
22 j x

2
dkyj y

dkzj z
if kxÞ j x ,

2dkyj y
dkzj z

if kx5 j x .

~25!

Had we considered Dirichlet boundary conditions on t
static walls (y50,Ly ;z50,Lz) we would have obtained the
same dynamical equations for the modesQk

n(t); i.e., the
form of the equations only depends on the boundary con
tions imposed along thex direction. This is because the co
efficients r jk ,h jk , and gjk do not depend on the particula
form of thefk in the planey-z, as long as they are properl
normalized in this plane. However, when Dirichlet bounda
conditions onx50 andx5Lx(t) are considered, the equa
tions for the modes are different@see Ref.@13# and Eqs.~48!
and ~49! below#. Note that the coefficientsgjk for Neumann
boundary conditions are different from those for Dirichl
boundary conditions.

When the mirror returns to its initial position fort.tfinal
the rhs of Eq.~20! vanishes and the solution reads

Qk
(n)~ t.tfinal!5Ak

(n)eivkt1Bk
(n)e2 ivkt, ~26!

with Ak
(n) and Bk

(n) being some constant coefficients to b
determined by the continuity conditions att5tfinal . The
number of particles in the modek is given by

^Nk&5(
n

2vkuAk
(n)u2. ~27!

-

1-4
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C. Multiple scale analysis

In order to find a solution to Eq.~20! we use the multiple
scale analysis technique@16#, which we have already applie
in our previous paper@13#. We first introduce a secon
time scalet5et and expandQk

(n)5Qk
(n)(0)1eQk

(n)(1) . Re-
ich
r-

t

03381
placing this into Eq. ~20! we obtain, as zeroth orde
solution, Qk

(n)(0)5Ak
(n)(t)eivkt1Bk

(n)(t)e2 ivkt. The func-
tions Ak

(n)(t) and Bk
(n)(t) will be obtained from imposing

that no secularities appear in the equation forQk
(n)(1) . This

reads
Q̈k
(n)(1)1vk

2Qk
(n)(1)522]tQ̇k

(n)(0)12S pkx

L0
D 2

sin~Vt !Qk
(n)(0)12V cos~Vt !Q̇k

(n)(0)2V2sin~Vt !Qk
(n)(0)

22L0
2V2 sin~Vt !r kkvk

2Qk
(n)(0)1L0

2V cos~Vt !r kkvk
2Q̇k

(n)(0)1L0
2V cos~Vt !Q̇k

(n)(0)FV2r kk1
1

L0
2
hkkG

1V2 sin~Vt !(
jÞk

gjkQj
(n)(0)22V cos~Vt !(

jÞk
gjk Q̇j

(n)(0)22L0
2V2 sin~Vt !(

jÞk
r jkv j

2Qj
(n)(0)

1L0
2V cos~Vt !(

jÞk
r jkv j

2Q̇j
(n)(0)1L0

2V cos~Vt !(
jÞk

Q̇j
(n)(0)FV2r jk 1

1

L0
2
h jk G , ~28!

where we have used that, to zeroth order,Q̈k
(n)(0)52vk

2Qk
(n)(0) .

The equations forAk
(n)(t) andBk

(n)(t) are obtained imposing the condition that any term in the right-hand side of Eq.~28!
with a time dependency of the forme6 ivkt must vanish. We get

dAk
(n)

dt
52

1

2vk
F kx

2p2

L0
2

22vk
2GBk

(n)d~2vk2V!1(
jÞk

F2S 2v j1
V

2 Dgjk 1dkyj y
dkzj z

v jGd~2vk2v j1V!
V

2vk
Bj

(n)

1(
jÞk

F2S v j1
V

2 Dgjk 2dkyj y
dkzj z

v jGd~vk2v j2V!
V

2vk
Aj

(n)1(
jÞk

F2S v j2
V

2 Dgjk 2dkyj y
dkzj z

v jG
3d~vk2v j1V!

V

2vk
Aj

(n) , ~29!

and an analogous equation forBk
(n) , obtained by the interchangeAk

(n)↔Bk
(n) . Note that Eq.~29! is independent ofg(x,t). This

nontrivial check of our calculations follows from two identities we used to derive Eq.~29!, namely,

2
1

2vk
L0

2vk
2Bk

(n)d~2vk2V!E
0

Lx(t)

dxE
0

Ly
dyE

0

Lz
dz~fk

2v8!85vkBk
(n)d~2vk2V!, ~30!

vk
2r jk 1

1

L0
2
h jk 5E

0

Lx(t)

dxE
0

Ly
dyE

0

Lz
dz@v8f jfk1v~fkf j82fk8f j !#852

2

L0
2
dkyj y

dkzj z
, ~31!
is
where we have used the boundary conditionsv8(0)50 and
v8(1)521.

D. Examples

Let us consider the ‘‘parametric resonant case,’’ in wh
the external frequencyV is twice the frequency of an unpe
turbed modek, V52vk . A second modej will be coupled
to the modek iff uvk6v ju5V. We first assume this is no
the case. Therefore the evolution equations become

dAk
(n)

dt
52

1

2vk
F kx

2p2

L0
2

22vk
2GBk

(n) ,
dBk
(n)

dt
52

1

2vk
F kx

2p2

L0
2

22vk
2GAk

(n) . ~32!

It is easy to check from these equations thatAk
(n) and Bk

(n)

grow exponentially aselNt, with a ratelN5(1/2vk)(vk
2

1vp
2), wherevp

25vk
22kx

2p2/L0
2 . It is interesting to com-

pare this rate with that for Dirichlet conditions, which
given bylD5(1/2vk)(vk

22vp
2) @13#. We have

lN

lD
5

vk
21vp

2

vk
22vp

2
.1. ~33!
1-5
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For a given mode, the rate for Neumann boundary conditi
is always bigger than the rate for Dirichlet conditions.

Let us now assume the existence of one mode, sayj , that
satisfiesv j53vk and j y5ky , j z5kz . We obtain forAk

(n)

andBk
(n)

dAk
(n)

dt
52

1

2vk
F kx

2p2

L0
2

22vk
2GBk

(n)

1
1

2vk
F ~21!kx1 j x

j x
2p2

L0
2

26vk
2GAj

(n) ,

dBk
(n)

dt
52

1

2vk
F kx

2p2

L0
2

22vk
2GAk

(n)

1
1

2vk
F ~21!kx1 j x

j x
2p2

L0
2

26vk
2GBj

(n) . ~34!

We also assume that the spectrum is such that the modej is
only coupled to the modek. The equations forAj

(n) andBj
(n)

are therefore

dAj
(n)

dt
52

1

6vk
F ~21!kx1 j x

kx
2p2

L0
2

12vk
2GAk

(n) ,

dBj
(n)

dt
52

1

6vk
F ~21!kx1 j x

kx
2p2

L0
2

12vk
2GBk

(n) . ~35!

We write the system of equations in matrix form

dv~t!

dt
5M v~t!, ~36!

where

v~t!5S Ak
(n)~t!

Bk
(n)~t!

Aj
(n)~t!

Bj
(n)~t!

D , M5
1

2vk S 0 a b 0

a 0 0 b

c 0 0 0

0 c 0 0
D , ~37!

where a5@2kx
2p2/L0

212vk
2#, b5@(21)kx1 j x( j x

2p2/L0
2)

26vk
2#, andc52 1

3 @(21)kx1 j x(kx
2p2/L0

2)12vk
2# . The so-

lution to this system can be easily obtained after diagona
ing the matrixM. The eigenvalues are given by

l5
1

4vk
~6a6Aa214bc!. ~38!

We note that the exponential growth rate in the uncoup
case is given bylN5a/2vk . When two modes are coupled
the rate is given by the real part of the biggest eigenvalu
Eq. ~38!. When a214bc,0, the rate is half the one ex
pected for the resonant mode when the coupling is neglec
as for Dirichlet boundary conditions@13#. It is easy to show
03381
s

-

d

in

d,

that this is the case if (21)kx1 j x511. However, in the op-
posite case,bc.0, and the growth rate for coupled modes
bigger thanlN5a/2vk .

A relevant case where two modes are coupled is the cu
cavity Lx5Ly5Lz5L. We fix V as twice the lowest cavity
frequency,

V52v (1,1,1)5
2pA3

L
. ~39!

The fundamental modek5(1,1,1) is coupled toj5(5,1,1)
becausev (5,1,1)53v (1,1,1). Only these two modes ar
coupled, since there does not exist in the spectrum any m
s satisfyingvs55v (1,1,1). For this particular case, the fou
eigenvalues are

l5
p

4A3L
~6566.35i !. ~40!

Had we neglected the intermode coupling, we would ha
concluded that the growth rate in the fundamental mo
would bel52.5p/A3L. The growth rate in the coupled cas
is one half of this.

One striking new feature is the possibility to enhance
exponential growth rate by means of mode coupling, p
vided that the two coupled modes satisfy (21)kx1 j y521.
As an example let us consider a cavity with dimensionsLy
5Lz54Lx . We set the external frequency to be

V52v (0,1,1)5
2p

A8Lx

. ~41!

If this is the case, then the modek5(0,1,1) is coupled toj
5(1,1,1). The four eigenvalues are

l5
A8p

16Lx
~616A31/3!. ~42!

This means that the exponential growth is at the r
0.74p/Lx , which is more than twice the value we would ha
predicted had we neglected the coupling (p/A8Lx).

IV. THE ELECTROMAGNETIC FIELD

A. Transverse electric modes

For the TE case, the expansion of the vector potential
an arbitrary moment of time, in terms of creation and an
hilation operators, can be written as

A(TE)~x,t !5(
n

an
inun

(TE)~x,t !1H.c. ~43!

For t<0 the cavity is static, and each field mode is given
1-6
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un
(TE)~x,t<0!5

1

A2vn

A 8

LxLyLz
S 0,an sinS pnx

Lx
xD

3cosS pny

Ly
yD sinS pnz

Lz
zD ,bn sinS pnx

Lx
xD

3sinS pny

Ly
yD cosS pnz

Lz
zD De2 ivnt, ~44!

wherenx , ny , and nz are integers such thatnx>1, ny ,nz
>0, andny ,nz cannot be simultaneously zero. The consta
an andbn are components of the polarization vector for t
electromagnetic field, satisfying the normalization conditi
an

21bn
251, and the Coulomb gauge condition,anny /Ly

1bnnz /Lz50.
When t.0, we expand the mode functions in Eq.~43!

with respect to aninstantaneous basis

un
(TE)~x,t.0!

5(
k

Qk,TE
(n) ~ t !A 2

Lx~ t !
sinS pnx

Lx~ t !
xDFkykz

(TE)~y,z!,

~45!

whereFkykz

(TE) is

Fkykz

(TE)~y,z!5A 4

LyLz
S 0,ak cosS pky

Ly
yD sinS pkz

Lz
zD ,

bk sinS pky

Ly
yD cosS pkz

Lz
zD . ~46!

The functionsFkykz

(TE) form a complete set satisfying

E
0

Ly
dyE

0

Lz
dzFkykz

(TE)
•Fj y j z

(TE)!5dkyj y
dkzj z

. ~47!

From the above Eq.~45! it is easy to obtain the dynamica
equations for the modesQk,TE

(n) . We get
-

03381
s

Q̈k,TE
(n) 1vn

2~ t ! Qk,TE
(n) 52l~ t !(

j
gkj Q̇j ,TE

(n)

1l̇~ t !(
j

gkjQj ,TE
(n) ~ t !, ~48!

where

gkj 52gjk 5H ~21!kx1 j x
2kxj x

j x
22kx

2
dkyj y

dkzj z
if kxÞ j x ,

0 if kx5 j x .
~49!

As expected, these equations are exactly those correspon
to a scalar field satisfying Dirichlet boundary conditions
the surfacesx50,Lx(t) @13#. Therefore, the number of cre
ated photons in the TE mode equals the number of cre
Dirichlet scalar particles.

As an example, let us consider the parametric reson
caseV52vk for a cubic cavity. For uncoupledk modes
~such as either of the two fundamental TE modes,k
5(1,1,0) andk5(1,0,1)), thenumber of TE photons grows
exponentially as

^Nk,TE&5sinh2~lDet !, ~50!

where lD is the growth rate for Dirichlet scalar particle
introduced in Sec. III D. For the above mentioned fundam
tal modes,lD5p/2A2L. The first coupled TE mode isk
5(1,1,1), which only couples to the TE modej5(5,1,1). At
large timeset/L@1 the number of TE photons in thos
modes grows aŝNk,TE&'^Nj ,TE&'e0.9et/L @13#.

B. Transverse magnetic modes

The expansion in terms of creation and annihilation o
erators is again of the form Eq.~43!, but now fort<0 each
field mode is given by
un
(TM)~x,t<0!5

1

A2vn

A 8

LxLyLz
X0,ancosS pnx

Lx
xD sinS pny

Ly
yD cosS pnz

Lz
zD , bn cosS pnx

Lx
xD cosS pny

Ly
yD sinS pnz

Lz
zD De2 ivnt.

~51!
Herenx , ny , andnz are nonnegative integers, andny andnz

cannot be simultaneously zero.
On the other hand, whent.0 we introduce an instanta

neous basis similar to that of the scalar field in Sec. III. W
write
e

un
(TM)~x,t.0!5(

k
„Qk,TM

(n) ~ t !1Q̇k,TM
(n) ~ t !g~x,t !…

3A 2

Lx~ t !
cosS pnx

Lx~ t !
xDFkykz

(TM)~y,z!, ~52!
1-7



-

i

fre
a

m
tis
on
o
le

ly

s
e

a

ha

cr
th
re
le
e
rs

a
a

as
a

s
of
a

in
a

cr
ala
la

pl
h
le

ons

of
so-
be
te
iffi-
ef.
ur-

ive

l
ce-

ally

r of

de

of

ary
th.

di-
en-
ex-

ns,
so-

f

he
ture
ree
s to
ex-

cal
the
ky

o,
M
and

CROCCE, DALVIT, AND MAZZITELLI PHYSICAL REVIEW A 66, 033811 ~2002!
where the functionsFkykz

(TM) are similar to their TE counter

parts~they can be obtained by interchanging cos and sin
the rhs of Eq.~46!. Since all TE modes havenx50, the first
mode of the cavity that can be excited by the external
quency is a TM mode. In particular, for a cavity such th
Lx!Ly ,Lz only TM modes can be excited.

From the above equation, it is now clear that the dyna
cal evolution of the TM modes is that of a scalar field sa
fying generalized Neumann boundary conditions. As a c
sequence, the number of created photons in the TM m
equals the number of created Neumann scalar partic
Again, let us consider the parametric resonant caseV
52vk for a cubic cavity. For uncoupledk modes@such as
either of the two fundamental TM modes,k5(0,1,0) andk
5(0,0,1)], the number of TM photons grows exponential
as

^Nk,TM&5sinh2~lNet !, ~53!

wherelN is the growth rate for Neumann scalar particle
also introduced in Sec. III D. For the fundamental mod
lN5p/L. The first coupled TM mode isk5(0,1,1), which
only couples to the TM modej5(4,1,1). For large times
(et/L@1) the number of particles in these modes grows
^Nk,TM&'^Nj ,TM&'e4.4et/L. The next coupled TM mode is
the same as the TE mode, namelyk5(1,1,1), coupled toj
5(5,1,1). The exponential growth iŝNk,TM&'^Nj ,TM&
'e4.5et/L, the growth rate for these modes being greater t
that for the TE case.

V. DISCUSSION

In this paper we have computed the resonant photon
ation inside a three-dimensional oscillating cavity taking
vector nature of the electromagnetic field into account. P
vious works studied the case of a scalar field with Dirich
boundary conditions. As the electromagnetic field involv
both Neumann and Dirichlet boundary conditions, we fi
analyzed a massless scalar field satisfying~generalized! Neu-
mann boundary conditions. We have shown that in this c
it is also possible to expand the field modes in terms of
instantaneous basis, the difference with the Dirichlet c
being that the expansion is not unique—it depends on
arbitrary functiong(x,t) satisfying the boundary condition
Eq. ~16!. However, physical quantities like the number
created particles or the energy density inside the cavity
independent of the choice of such a function. After treat
the Neumann scalar case we considered the full electrom
netic problem and showed that the TE modes of the ele
magnetic field are essentially described by a Dirichlet sc
field, while the TM modes correspond to a Neumann sca
field.

We have studied in detail the resonant situationV52vk
for two cases: an uncoupled resonant mode and two cou
resonant modes. In both cases, the exponential growt
created photons is greater for TM modes. For the uncoup
case, we have found that
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lTM

lTE
5

vk
21vp

2

vk
22vp

2
. ~54!

For a cavity withLx.Ly.Lz , vp
2. 2

3 vk
2 solTM.5lTE . We

can estimate the number of created TE and TM phot
given by Eqs.~50! and ~53! using typical values for the
maximal dimensionless displacemente that may be obtained
in conceivable future experiments. For 3D cubic cavities
linear dimensions of the order of 1 –10 cm, the lowest re
nant frequency is of the order of GHz. It may turn out to
very difficult, if not impossible, to make the cavity oscilla
as a whole at such a high frequency. To overcome this d
culty a different experimental scenario was proposed in R
@12#, consisting of strong acoustic waves excited on the s
face of the cavity wall. Typical materials cannot bear relat
amplitude deformations in excess ofdmax51022. This sets a
limit to the maximum velocity of the boundary,vmax
5dmaxvs'50 m/s, (vs is the speed of sound in the materia!,
and consequently to the maximal dimensionless displa
ment emax5vmax/VL. For example, for a cavity withL
510 cm whose lowest mode@i.e., either of the two TM
modes k5(0,1,0) or k5(0,0,1)] is being excited (V
52pc/L518 GHz), we getemax'1028. Even for a value
of e, ten times smaller than this, one gets an exponenti
large number of created photonŝNk,TM&5sinh2(10t/s)
which, after 1 sec, gives a total of approximately 108 photons
created in that mode. We can also compare the numbe
photons produced for an uncoupled modek, common to both
kind of polarizations TE and TM. For example, for the mo
k5(1,1,0) one gets^Nk,TE&'sinh2(3t/s) and ^Nk,TM&
'sinh2(10t/s), which after one second produces a total
102 TE photons and 108 TM photons. For the case of two
coupled modes we have found that, for Neumann bound
conditions, the coupling can enhance the exponential grow
This contrasts with the case of Dirichlet boundary con
tions, in which the coupling always suppresses the expon
tial growth. These facts may be relevant for an eventual
perimental verification of the dynamical Casimir effect.

All the above considerations assume ideal conditio
such as perfectly conducting plates, exact parametric re
nant conditionV52vk , arbitrary largeQ factor for the cav-
ity ~no leakage of photons!, no thermal noise, etc. Some o
these conditions were relaxed in our previous paper@13#,
where we analyzed, for Dirichlet boundary conditions, t
enhancement of photon creation due to finite tempera
effects, slightly off-resonance situations, the case of th
coupled modes, etc. The generalization of these finding
the electromagnetic case is not too complicated, and we
pect similar conclusions. Given our results for the dynami
behavior of TE and TM modes, it is also possible to study
full electromagnetic problem in three dimensional lea
cavities along the lines of@20#.
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